skip to main content


Search for: All records

Creators/Authors contains: "Choi, Woo Seok"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Unexpected, yet useful functionalities emerge when two or more materials merge coherently. Artificial oxide superlattices realize atomic and crystal structures that are not available in nature, thus providing controllable correlated quantum phenomena. This review focuses on 4d and 5d perovskite oxide superlattices, in which the spin–orbit coupling plays a significant role compared with conventional 3d oxide superlattices. Modulations in crystal structures with octahedral distortion, phonon engineering, electronic structures, spin orderings, and dimensionality control are discussed for 4d oxide superlattices. Atomic and magnetic structures,Jeff= 1/2 pseudospin and charge fluctuations, and the integration of topology and correlation are discussed for 5d oxide superlattices. This review provides insights into how correlated quantum phenomena arise from the deliberate design of superlattice structures that give birth to novel functionalities.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Chiral phonons and their strong coupling to spins reveal unconventional interlayer exchange interaction and resultant spin state. 
    more » « less
  3. Abstract

    Engineering of phonons, that is, collective lattice vibrations in crystals, is essential for manipulating physical properties of materials such as thermal transport, electron‐phonon interaction, confinement of lattice vibration, and optical polarization. Most approaches to phonon‐engineering have been largely limited to the high‐quality heterostructures of III–V compound semiconductors. Yet, artificial engineering of phonons in a variety of materials with functional properties, such as complex oxides, will yield unprecedented applications of coherent tunable phonons in future quantum acoustic devices. In this study, artificial engineering of phonons in the atomic‐scale SrRuO3/SrTiO3superlattices is demonstrated, wherein tunable phonon modes are observed via confocal Raman spectroscopy. In particular, the coherent superlattices led to the backfolding of acoustic phonon dispersion, resulting in zone‐folded acoustic phonons in the THz frequency domain. The frequencies can be largely tuned from 1 to 2 THz via atomic‐scale precision thickness control. In addition, a polar optical phonon originating from the local inversion symmetry breaking in the artificial oxide superlattices is observed, exhibiting emergent functionality. The approach of atomic‐scale heterostructuring of complex oxides will vastly expand material systems for quantum acoustic devices, especially with the viability of functionality integration.

     
    more » « less
  4. Quantum materials (QMs) with strong correlation and nontrivial topology are indispensable to next-generation information and computing technologies. Exploitation of topological band structure is an ideal starting point to realize correlated topological QMs. Here, we report that strain-induced symmetry modification in correlated oxide SrNbO 3 thin films creates an emerging topological band structure. Dirac electrons in strained SrNbO 3 films reveal ultrahigh mobility (μ max ≈ 100,000 cm 2 /Vs), exceptionally small effective mass ( m * ~ 0.04 m e ), and nonzero Berry phase. Strained SrNbO 3 films reach the extreme quantum limit, exhibiting a sign of fractional occupation of Landau levels and giant mass enhancement. Our results suggest that symmetry-modified SrNbO 3 is a rare example of correlated oxide Dirac semimetals, in which strong correlation of Dirac electrons leads to the realization of a novel correlated topological QM. 
    more » « less
  5. Abstract

    Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size‐dependent activity in nanoparticles and thickness‐dependent activity of thin films imply that the sub‐surface layers of a catalyst can contribute to the catalytic activity as well, most of these studies consider actual modification of the surfaces. In this study, the role of catalytically active sub‐surface layers was investigated by employing atomic‐scale thickness control of the La0.7Sr0.3MnO3(LSMO) films and heterostructures, without altering the catalyst/electrolyte interface. The activity toward the oxygen evolution reaction (OER) shows a non‐monotonic thickness dependence in the LSMO films and a continuous screening effect in LSMO/SrRuO3heterostructures. The observation leads to the definition of an “electrochemically‐relevant depth” on the order of 10 unit cells. This study on the electrocatalytic activity of epitaxial heterostructures provides new insight in designing efficient electrocatalytic nanomaterials and core‐shell architectures.

     
    more » « less